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Baroclinic annulus waves 
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The thermally driven motion of water contained in a rotating annulus of square 
cross-section and having a free surface is investigated by numerical integration 
of the three-dimensional non-linear Navier-Stokes equations. The nature of 
steady wave flow is examined in detail and a comparison made with the corre- 
sponding axisymmetric solution in parameter space. 

The steady wave solution proves to be consistent kinematically, dynamically 
and energetically with Lorenz’s hypothesis that  the wave can be attributed to 
the baroclinic instability mechanism. The deviaborict wave possesses some of the 
characteristics of the theoretical Eady wave and it is possible to define the 
complete deviaboric wave structure by means of two-dimensional quasi-phase, 
amplitude diagrams. These diagrams may also typify the nature of certain 
solutions to  the non-separable baroclinic instability problem. 

The wave motion is almost completely independent of the side boundary 
layers which make little contribution to  the characteristics and energetics of the 
deviakoric flow. These side layers are approximately axisymmetric and appear 
qualitatively indistinguishable from their counterparts in the axisymmetric 
solution. However, significant Ekman layer features appear in bhe deviatoric 
wave structure. 

Away from the boundaries the dynamical balance of terms is hydrostatic and 
quasi-geostrophic with changes of vertical vorticity influenced by stretching and 
viscous diffusion. Heat conduction is completely unimportanb except in the side 
boundary layers. 

The angular momentum transporb by the deviatoric motion is largest a t  the 
free surface and is mainly against the angular momentum gradient. A strong 
outward deviatoric flux of momentum is found in the Ekman layer. 

The dissipation of deviatoric kinetic energy occurs in the Ekman layer and jet 
whilst most of the dissipation of the mean kinetic energy occurs in the boundary 
layer of the inner wall. 

The large differences between the axisymmetric and zonal mean states indicate 
that linear baroclinic instability analysis of the axisymmetric state is not strictly 
relevant t o  an understanding of the wave formation. The character of the wave 
suggests that  the mean environment with which the deviatoric wave interacts 
is the wave-present zonal mean state. Only a non-linear finite amplitude baroclinic 
instability analysis (as yet undeveloped) could possibly explain the wave 
formation. 

t The deviation from the zonal mean. 
27 F L M  49 
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1. Introduction 
The object of this paper is to examine the nature of the steady waves that occur 

in the annulus experiments. This will be done by analyzing a numerical solution 
of the Navier-Stokes equations. The solution was first outlined in an earlier paper 
on the integration technique (Williams 1969). 

The motivation for studying annulus convection has been discussed by 
Lorenz (1967). The main reason for study is the apparent relevance of the 
experiments to baroclinic instability theory and thence to various large scale 
phenomena such as the general circulation of the atmosphere. 

The present results will support the explanation of the various annulus modes 
first proposed by Lorenz (1953). I n  his article he made 3 major hypotheses 
which have some bearing on the problem in hand: (i) that  symmetric flow is 
mathematically possible but physically unstable in the wave regime; (ii) that 
the disturbances leading to the waves gain tiheir kinetic energy from existing 
potential energy rather than existing kinetic energy, i.e. they are a baroclinically 
unstable flow; (iii) that heating and rotation both affect the regime of flow 
by affecting the static stability parameter. Some of the consequences of these 
hypotheses were later examined by Lorenz (1962, 1963). 

A numerical solution for an annulus wave was obtained to  try to determine the 
complete nature of such waves and thereby test the validity of Lorenz’s hypo- 
theses. Having established the deviatoric flow to be essentially a form of finite 
amplitude Eady wave, we then discuss the energy, momentum and heat trans- 
port characteristics of such a wave. We also investigate how active the different 
boundary layers are in the mechanics of the wave and how the phase-amplitude 
characteristics of linearized theory are modified in our steady finite amplitude 
wave with its more complex underlying basic fields. Pedlosky (1970) has recenkly 
instigated the analytic study of finite amplitude baroclinic waves. 

On the geophysical side, the role of baroclinic instability in producing the 
atmospheric cyclone-anticyclone systems and the possible transfer properties of 
such systems in the global circulation has most recently been discussed by 
Pedlosky (1964) and Green (1970). We will also use our results as evidence in 
support of the view that many of the characteristic features of the atmosphere’s 
dynamics and energetics simply reflect the finite amplitude consequences of 
baroclinic instability. 

Not all the details of the solution are presented in this paper. Certain synoptic 
aspects are presented in a companion paper (Williams 1971), to which occasional 
reference will be made. 

2. The fundamental equations 
We will consider the motion of a fluid bounded by two co-axial cylinders of 

inner and outer radii a, b respectively, and two parallel horizontal planes which 
are a distance d apart, figure 1 (a). The container rotates a t  a uniform rate Q, 
where the rotation vector, anti-parallel to gravity g, coincides with tihe vertical 
axis of the cylinders. Motion relative to the solid rotation of the container is 
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FIGURE 1. (a) Configuration of the system (close to actual size). (b)  Pressure wave at upper 
surface. Container rotates counterclockwise at SZ = 0.8 rad sec-l and the wave rotates 
counter-clockwise relative to the container at  SZ* = 0.033 rad sec-l. Domain of interest is 

= 0" to 72". The pressure is normalized in terms of the maximum and minimum values 
which are 1-8319 and 0.6974 cm2 se@. 

27-2 
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measured in cylindrical co-ordinates r ,  $, z based on the axis, r being radial and 
z vertical. The velocity components are u, v, w in the zonal, radial and vertical 
directions respectively. The angular size of the annulus sector @ is normally 2n 
but for the solution we consider only the sector CD = 2n/5, figure 1 (b) .  

The following definition of a Boussinesq liquid is taken for convenience: that 
density variations are negligible except in the buoyancy term and that the 
coefficients v, K ,  ,!? of viscosity, heat diffusivity and thermal expansion are 
constant. We also take the centrifugal acceleration to be negligible compared 
with gravity: Q2b/g < 1,  as a consequence of which the upper surface can be 
taken to be of constant height and the free-slip rigid lid condition can be used for 
this surface. 

The perfectly conducting inner and outer cylinders are held at  different 
constant temperatures T, and Th respectively. This imposed horizontal tempera- 
ture differential AT = Th - T, drives the fluid away from a state of solid rotation. 
The base and upper surface are thermally insulating. 

Upon writing the hydrostatic pressure deviation as n = p / p o  and the 
temperature deviation from T, as T, the Navier-Stokes equations for this 
system may be expressed in the following form: 

_ -  
Dt 

_ -  D u  Dt - --nc-(2R+;) r 1 

- = -  
Dw 
Dt 

with the heat transfer equation as 

DTIDt = K V T ,  ( 4 )  

and the equation of mass conservation as 

(rv), + uc + rwz = 0, ( 5 )  

where we have defined the operator identities 

The boundary conditions as used in the calculations and which express the 

(i) on the base 
state of the fluid at the boundaries are: 

w = v = u = T, = 0 ,  rz = /3gT+vwz,; (8) 

=a = PgT; (9) 

(ii) on the free surface 

W = V  = U  = T = 0 ,  z z z  
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(iii) on the side walls 

w = v = u = o ,  71TT,=v 

42 1 

(10) 

and T = 0, AT applied a t  r = a, b respectively. 
The procedure for solving the system of equations (1)-( 10) involves extensive 

numerical calculation. The method has been documented elsewhere (Williams 
1969), and the reader is referred to  that paper for further details. In  brief, the 
method consists of representing the equations in a carefully chosen finite differ- 
ence form and programming the calculation for a computer. We can then obtain 
solutions to  the above equations as functions of space and time. 

3. The analysis equations 
In discussing the maintenance and the transfer properties of the annulus wave 

we find it informative to  calculate the elements of the following set of energy, 
angular momentum and heat equations. Furthermore, i t  is useful to  look a t  the 
solution in terms of the zonal (i.e. azimuthal) average and deviations therefrom 
for certain quantities. This procedure is justified a posteriori by the ensuing 
simplification and insight achieved. We use the term 'deviatoric' for the zonal 
deviation rather than 'eddy' or 'perturbation' as the flow is laminar and finite 
amplitude. The following averaging operators will be used (i) the zonal 

(ii) the vertical 

and (iii) the radial 

Primed quantities denote deviations from the zonal mean. 

(a )  The kinetic energy 

Writing the total squared velocity as c2 = u2 + v2 + w2 we define the total kinetic 
energy as K ,  = +c2 and the zonal mean and deviatoric energies as K ,  = &C2 and 
KE = K ,  - K,  respectively. Defining the deviatoric energy this way produces 
locally consistent transfer equations, with identifiable conversions and inter- 
actions, see Smagorinsky, Manabe & Holloway (1965). 

( b )  The global energy transfers 

To discuss the net energy transfers between the potential and kinetic forms we 
have the equations: 
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(13) 

where ( ) denotes integration (not averaging) over the whole annular sector. 
The potential energy has been defined as P = ( - PgzT) and v .  F is used to 
represent the friction terms. The term %'(KE, K,) represents the neb conversion 
of one kinetic energy form into the other. Another associated term 4 ( K E ,  K,) in 
equations (16)-( 19) represents a local interaction between the two kinetic 
energies that produces no net exchange. The full local form of these conversion 
and interaction terms is 

%?(1cE, K,) = + [(w") Z, + r(zIIu./) (+),I + [(211wI) G, + (v'v')~,] 
+ [(w'w')Ti&+ (v'w')iZJ + [V/r(u'u')], 

JJ(K,, K,) = - ( l /r)  [r(Z(v'u') + ~(77) + ~(v"))], 

a 
- ( P )  = - <pgiZn - ( p g w " )  -pgK(zV2T), at 

~ ~ ~ 

(14) 

(15) - [f(w") + F ( 2 L G T )  + W ( u x q ] z .  

(c) The vertical kinetic energy transfer equations 
To examine the interaction between different levels of the flow, particularly 
between the Ekman layer and the interior, we construct the radial, zonal average 
of the kinetic energy equations. The resulting expressions, functions of z only, 
describe the transfer of energy in the vertical. 

= H  I=ZII=H + /3g(w'T') + Y(V' . F') . 
The above equations are in a desirable D/Dt form. Terms represent energy 
changes by convective transfer, pressure interaction, non-linear exchanges, 
conversion of potential energy by buoyancy forces and frictional dissipation. 

( d )  The radial kinetic energy transfer equations 
As a measure of the overall radial transfer of energy and the interaction between 
the side boundary layers and the interior, we define the kinetic energy equations 
as functions of r only. These are: 

V =v -~ 

+ pg(w'2") + v(v' . F') . 
When the radial variation of these terms is presented later in figure 16 they will 
be multiplied by r so that the contrjbubions to the net global integrals can be 
judged. 
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(e )  Local variation of energy dissipation 

So that we may discuss the local variations of the sources and sinks of kinetic 
energy the molecular transform function must first be written in tensor 
notation as 

The first term on the right of equation (20) is the general energy diffusion 
(zero volume integral). The quantity e2 is an invariant and is the dissipation 
of energy. In cylindrical co-ordinates c2 may be written in terms of the 
rate of strain functions: 

where 

This dissipation function can be divided into zonal mean and deviatoric com- 
ponents C2 and p. These are calculated. 

(f) The angular momentum transfers 

The angular momentum m = r ( u  + Or) is a fundamental entity in rotating fluids 
even though it may not be a conserved quantity. The basic equation for the zonal 
mean angular momentum is 

- _ _  
Et = -[G%,+G6iz]-[(l/r) (~v’m’),+(w’m’),]+~[r(~,/r),+~,,]. (24) 

Two useful integral forms of this equation are the vertical mean form and the 
transport form for the balance of an inner ring. These have equations 

mt -V - = -  [: - (  %?’I -- - [: (=):I + v [r f$) - (Ez)atz=o], (25) 
r 

and 

Equation (25)  provides a useful estimate of the overall contribution of the 
different mechanisms bo the angular momentum balance at different radii 
whereas (26) demonstrates more clearly how inner regions have their angular 
momentum maintained. 
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(9)  The  heat transfer 

The following equation for the zonal mean temperature provides a measure of 
how the heat transfer depends on the various mechanisms: 

Tt = - [ V ~ , + ~ W T ~ I - [ ~ / ~ ( ~ . U I T I ) , + ( ~ ' T ' ) , ]  +KvT. (27) 

As a measure of the effectiveness of the flow as a heat transferring mechanism we 
define a Nusselt number for each sidewall 

ds, c = a,b, 
c b q ( c )  

Nu(c) = -1og- ~ 

d a O A T  f 
relative t o  the amount of heat that  would be transferred by solid conduction 
under the same AT. 

The computation of the elements of (1 1) to (28) involves a programming eiforb 
comparable to  that for the prediction equations. 

4,. Parameter values and preliminary exploration of parameter space 

to produce a steady wave. 
The following parameter values were chosen as being suitable for a calculation 

Geometry: a = 2 cm, b = 5 cm, d = 3 cm. 
Physicd parameters of water a t  20 "C: 

v = 1.008 x cm2 sec-l, K = 1.420 x cm2 sec-l, 

p = 2.054 x 10-4 (oc)-~. 

A T  = 5°C) To = 2O"C, IR = 0-8radsec-l, g = 981 c m s e r 2 .  
Resolution: Ar' = A, Ax' = &, A$' = &. 
Non-dimensional numbers of solution: 

Thermal Rossby number, n4 = pgATdiQ'(b - a)2 = 0.525;f 
Taylor number, n5 = 4Q2(b-a)5/v2d = 2.041 x lo6; 
Dynamic Rossby numbers, R, = um,,/2Cl(b -a )  = O.lO8-f for wave 

solution = 0.0622 for axisymmetric solution; 
Nusseh number, Nu = 7.3, 3.24t for wave and axisymmetric solutions. 

Wave rotation rate Q* = 0.033t( = IR124). Time iteration invoIved 10 000 
steps ab At = 0.05sec. 

This set of parameters was chosen as it satisfied three criteria: (i) that the 
geometry be non-extreme and close to the range of laboratory values, (ii) that the 
boundary layers not be too thin and hence be accurately resolvable and (iii) that 
AF, f2 shouId not have too large a range in traversing the various rdgimes. 

The transition spectrum for the parameter values as estimated from observa- 
tional data is shown in figure 2. The boundary for the transition from wave flow 
t o  irregular flow is unknown. Calculations were made along the line AT = 5" C. 
Traversing this line we can pass from axisyminetric flow at  point A (IR = 0.5 rad 
sec-1) to  wave flow, then to  irregular flow near point C (Q = 2.0radsec-1). For 

t n4/4 would be a better Rossby number. 
$ Values given b y  solution. 
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the parameter values of points A to C the boundary layers can be adequately 
resolved and thus this parameter domain is suitable for obtaining numerical 
solutions for any regime of flow. (However, the vacillating flows have only weak 
amplitudes and are not satisfactory for further study.) 

Using medium resolution, a preliminary set of calculations was made at various 
points along the line AC. These calculations confirmed that the transition curve 
between axisymmetric and wave flow lay near the D, M = O.Gradsec-l, point. 
They also established that beyond C the flows tended to be irregular. The wave- 
numbers ranged from 4 to 6 between D and C as observations suggested. Point H ,  
s2 = 0.8 rad sec-l, was chosen for the detailed calculations as it seemed to be 
a point with a high possibility of producing a steady wave. 

10' 

1 on 

774 lo-' 

10- * 

10-3 

775 

FIGURE 2. Transition curve between axisymmetric motion (to the left) and wave motion 
constructed from data of Fowlis & Hide (1965) for the parameters of the calculation. 
Co-ordinates are the thermal Rossby n4 and Taylor n5 numbers. Circled values come from 
the summary curves of Fowlis & Hide interpreted for our parameter values. Cross marks 
indicate transition points for observations with small fluid depth (5  em) and square marks 
are likewise for small inner radius. Associated wave-numbers are given as a guide. The 
diagonal line AT = 5' C is locus of interest. The solution is obtained a t  H (a = 0.8). Other 
points on the line have values of a, A = 0.5, D = 0.6, E = 0.7, H = 0.8, G = 0.9, 
B = 1.0, C = 2.0, P = 5.0. The symmetric to wave transition occurs near = 0.55 and 
irregular flow occurs near point C. 
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Anumerical resolution of 34 by 34 points was decided upon for the vertical and 
radial directions. The accuracy of this resolution was tested and confirmed by 
comparing the axisymmetric solution with that for a 48 x 48 resolution and by 
comparing numerical and analytical Ekman layers for the axisymmetric flow, 
see Williams (1971) for further details. So that the resolution in the azimuthal 
direction would be optimum and comparable with the radial resolution, the 
calculations were confined to  one wavelength. Having determined that wave- 
number 6 occurs a t  these parameter values over tihe 271 sector, the calculations 
were carried out for a sector of (D = 2 ~ 1 5  with a resolution of 38 points. 

5. Time development 
The time development of the flow is illustrated in figure 3 in terms of global 

integrals. A ~ I  time t = 0 the initial state of the fluid is one of solid rotation v = 0 
and isothermal temperature T = $AT. With a time step of 0.05 sec integration 
of equations ( 1 )  to  (10) was made until a quasi-steady wave motion at  517 sec was 
achieved. 

For the first 15Osec the flow remains axisymmetric as the monotonic curses 
show. A small random temperature disturbance was added a t  50sec so that 
when the fluid became unstable a t  150 sec a full three-dimensional motion grew. 
The growth of the wave is indicated by the deviatoric kinetic energy quantity 
( a d 2 ) .  As the wave begins to  develop the conversion of potential to  kinetic 
energy is abruptly increased. The other integrals show similar growth patterns 
although the zonal mean kinetic energy quantity decreases during the 
wave initiation stage. The sudden wave growth halts near 200 sec and declines, 
to  level off a t  230 sec. Thereafter the flow tends to  a steadiness at 500 sec where 
the wave is fully developed, in equilibrium and rotating uniformly relative to the 
container a t  a rate of Q* = 0.033 rad sec-I. 

For convenience the solution at  517 sec will be discussed, this time being the 
time when the trough of the upper surface pressure wave is in the 4’ = 0 position. 
The solution outlined by Williams ( 1  969) was at  the 400 sec stage and differs 
slightly from that in this paper. 

The average temperature of the water changes from 0.5AT to  approximatiely 
&IT during the calculation. This explains the non-constancy of the total 
energy in figure 3. 

6. Comparison of axisymmetric and zonal mean solutions 
I n  this section we discuss only the zonally averaged fields of the wave solution, 

reserving consideration of the deviatoric characteristics for the next two sections. 
Figure 4 contains the zonal mean basic fields of the wave solution together 

with the axisymmetric solution for the same parameter values (point H ) .  The 
features of the axisymmetric solution resemble those obtained in earlier studies 
(Williams 1967). The radial flows form a single cell and triple cell system in the 
axisymmetric and wave solutions respectively, with stronger velocities occurring 
in the wave case. The maximum zonal velocity (‘jet’) is larger for the sym- 
metric flow, 0.52 cm sec-l, than for the mean wave flow, 0.30 cm sec-1, although 
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FIGURE 3. Time development of the calculation as given by integral quantities. Wave 
develops from axisymmetric flow at 150 sec and reaches quasi-steady state at 500 sec. 
Time step was 0.06sec for 10,000 steps. Diagram (a )  has the total quantities ( A )  

( G )  ( a d 2 ) ;  (H) (&w2). Diagram (b) has energy conversions ( I )  (pgzoT); ( J )  PgR(zV2T); 
( K )  v(v.F), from equation (13). In c.g.s. units. 

l O - l ~ ( - P - 8 0 ) ;  (B)  lO-lxNu(b); (0) l O - ’ x N ~ ( a ) ;  ( D )  (9~’); ( E )  (@’); (F)  (4~~); 
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the local jeb reaches 0.52 cm sec-l in the trough of the wave. Because of strong 
curvature effects in this geometxy the relative angular momentum is also given, 
in figure 4 ( c ) ,  and this shows that the zonal mean field rG has a vertical axis and 
a degree of symmetry about r' = + not exhibited by u. Figure 5 for the averaged 
profiles of zonal velocity shows a similarity in overall character for the two cases. 

Stronger thermal boundary layers form on the sidewalls in the wave case and 
the isotherms lie inore horizontal, resulting in a larger stahie stability, figures 4 
and 6. I n  the vertical profile of mean temperature, figure 6 ( b ) ,  the variation 
goes as 2': away from the horizontal boundaries. The global mean normalized 

I \  ' I  
" I  I I I I I  I I I I 

0 1 

(iii) r r  (iv) 

(a) 

FIGURE 4. (a )  Vertical sections of the steady state axisymmetric solution at  the same 
physical parameters as the wave solution. (i) (II. x lo3) em see-l, (ii) (TIAT x lo), (iii) 
(u x 102) om see-1, (iv) (n x 10') em2 sec-2. Nusselt number is 3.24. Cold inner wall is on the 
left of each diagram. Co-ordinates all as in (iii). 

(71) Vertical sections of zonally averaged fields of the steady state wave solution. 
(i) F x  103) em3 see-1, (ii) (TJAT x lo), (iii) ( T i  x lo2) em see-l, (iv) ( F x  lo1) emz The 
stream function is defined by rV = - Fz ; ri2 = +r. 

(c) Relative angular momentum ru. for (i) axisymmetric and (ii) zonally averaged wave 
solutions, in cm2 sec-l. 
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temperatures are 0.670 and 0.672 for the wave and symmetric cases respectively. 
These values are close to the Q value for z'4. Whilst the parabolic behaviour of 
is not complete and may be fortuitous clearly the variation of !F with x is not 
linear. We might speculate that  this parabolic temperature surface perhaps 
indicates what variation temperature surfaces with minimum available potential 
energy will have. Because of thermal boundary layering the temperature 
differential across the interior, A, F ,  varies strongly with height, figure 6 ( b ) ,  
reaching a maximum near zf = +. In fact there is a significant variation in the 
interior baroclinicity, F,., which has a diagonal axis, figure 7. Thus we see devia- 
tions in both the axisymmetric and wave fields from the simple basic fields 
assumed in linear theories. 

I 

z' 

0 
0 1 0.0 0.1 0.2 0.3 

r' Zonal velocity 

FIGURE 5. Zonal velocity profiles. (a )  Vertically averaged profiles of ( A )  axisymmetric u, 
(B) wave Z and (C) scaled-wave angular momentum trii. ( b )  Radially averaged profiles 
of ( A )  axisynimetric u and (B) wave 'ii, in cm sec-1. 

0 

r' 

1 

z' 

0 
0.0 0.5 1 *O 

Temperature 
FIQURE 6. Temperature profiles. (a )  Vertically averaged profile of TjAT for ( A )  axisym- 
metric ( B )  wave mean. ( b )  Radially averaged profile of T/AT for ( A )  a,xisymmetric, 
( B )  wave mean, (C) is (z/d)$ and ( D )  is the temperature differential across the interior of 
the fluid, A I T / A T ,  where AIF = {T a t  r' = $$ minus T a t  r' = &}. Mean temperatures are 
0.672, 0.670 for axisymmetric and wave solutions. 
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The dynamics of the above type of axisymmetric flow has been discussed by 
Williams (1967) while McIntyre (1968) has analyzed the closely related rigid lid 
system. Primarily the convective side boundary layers drive the axisymmetric 
flow. These boundary layers produce an interior temperature field to which the 
zonal velocity responds through the thermal wind equation. Small interior 
meridional velocities are necessary to provide a Coriolis force to ma.intain the 
zonal velocity against viscosity and t o  provide enough heat convection to 
maintain the interior temperature field against conductive relaxation. The 
cause of the mean meridional flow of the wave is different and will be discussed 
in $59 and 10. 

1 

2’ 

0 

0 1 

P’ 

FIGURE 7. Baroclinicity of the interior region a8 given by pv/AT x 102. 

The large differences between the axisymmetric state and the mean zonal state 
of the wave has important ramifications as regards constructing an analytical 
instability theory. This point will be discussed further in $ 1 1  after the deviatoric 
fields have been examined. 

7. The wave structure at I?’ = Q 
To obtain an immediate if not completely comprehensive idea of the nature 

of the wave we look at the deviatoric variables in the centre of the fluid, r’ = 4, 
as functions of height and azimuth (figure 8). For the u’ variable, cross-sections 
at r’ = 3 and 3 are displayed. These diagrams are indicative of the nabure of the 
deviatoric field as will be seen in $ 8. (The wave and total flow move to the right 
in these diagrams.) 

This composite figure of the 5 basic deviatoric fields reveals what the annulus 
wave essentially is, namely a baroclinic wave similar to Eady’s classical baro- 
clinic wave, figure 9 (b).  We can say this because the deviatoric fields have the 
same structure and inter-relationship between the variables as that of the theory, 
despite certain differences in their origins. 
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The relationship between the annulus wave solution and the theoretical Eady 
wave may be further displayed by abstracting from the solution a quasi-phase, 
amplitude figure. To do this heuristically the quasi-phase variation is based on 
the position of the zero value contours and the quasi-amplitude is derived by 
plotting the maximum, minimum values as functions of height. The results are 
shown in figure 9(a) .  The resemblance to  Eady’s result is close despite the 
variations in shear and baroclinicity etc. present in the basic fields of the annulus. 
This figure displays the nucleus of the wave, establishing a link with analytical 
theoryt that enables us to classify the solution. 

2’ 

1 

0 
0 1 

(4 (f) 
9’ 

FIGURE 8. Composite of azimuthal sections of the deviatoric fields for the five basic 
variables (a )  (d x lo2) em2 sec-*, ( b )  (w’ x lo2) cm see+, (c) (T’/AT x lo2), ( d )  (w’ x lo2) cm 
sec-1 at the centre of the fluid r‘ = 8 and (u’ x lo2) cm sec-l at ( e )  r’ = 1 and (f )  r‘ = 2. 
Ordinate is height z’ and abscissa $‘ over one wavelength. Diagrams are periodic in 4’. 

t That also indicates that the solution is accurate. 
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The most significant deviation of the wave from Eady's solution occurs in the 
T' amplitude distribution. The annulus wave displays maximum T' values a t  
mid-height whereas theory predicts minimum values a t  that level. This disagree- 
ment reflects the difference between the complex baroclinicity structure of the 
annulus (figure 7) and the simple structure of Eady's theory. Note, however, that 
the phase distributions of T' are similar. 

The deviatoric fields of figure 8 are displayed in another way in figure 10 where 
all the variables a t  a given height are plotted as functions of azimuth, $'. This 
form demonstrates the degree to which the fields vary sinusoidally. The diagrams 
at z' = 4, $, $ represent the fluid interior, zf = 1 the free surface and z' = & the 
Ekman layer. Thus diagram (c )  for x' = 4 represents the nearest the solution will 
come to  the pure Eady wave. 

The characteristics of this type of wave are well known. Briefly these are the 
tilting pressure wave, the geostrophically related v' wave with its phase shift of 
t wavelength, and the in-phase w', T wa,ves with extrema a t  the middle level 
producing a strong release of potential energy. However, differences in the quasi- 
phase, amplitude distributions (figure 9 (a) )  indicate some relatively moderate 
non-linear effects present in the annulus flow. The v' and w' waves are a 9 wave- 
length out of phase with each other, the combined motion being upward and 
inwards toward the cold region and outward and downward toward the warm 
region. 

The above picture of the wave structure of course represents only the central 
cylinder of fluid. We will show in the next section that a similar structure holds 
throughout much of the fluid. Although in the sidewall and Ekman boundary- 
layer regions the wave becomes modified, its overall behaviour is not significantly 
affected by the side layers. These layers remain essentially axisymmetric and 
interact very weakly with the interior wave, affecting ib  far less than does the 
base where a significant Ekman layer forms. 

8. The complete wave structure 
I n  this section flow behaviour over the whole fluid is examined. We are 

particularly interested in seeing how representative the Eady type structure a t  
r f  = 9,  discussed in 3 7, is of the flow at other radii. The complete wave character 
could be determined by examining the various deviatoric distributions such as 
those in figure 8 throughout the fluid. This would be an intricate procedure and 
is not followed. 

To obtain greater insight into the solution we construct quasi-phase, amplitude 
diagrams for all deviatoric variables as functions of T' and z' (figures 11 and 12). 
These figures form a two-dimensional extension of the simpler Eady figure and 
can be regarded as defining the nature of the wave. They perhaps form desirable 
invariants for annulus waves. This type of two-dimensional Eady figure for 
amplitude and phase was used by Eady (see Green 1970) and McIntyre (1970) 
to  display results when lateral variations are introduced into the basic Eady 
problem. The distributions may also indicate the nature of certain solutions to  
the basic non-separable baroclinic instability problem. 

28 F L M  49 
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FIGURE 9. For legend see facing page. 
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High 

Fall 

FIGURE 9. (a) Quasi phase and amplitude variations for the deviation fields d, T’, w’, w’ 
of the wave solution at r’ = +. Phases in diagrams (i) and (ii) are based on zero lines of 
figure 8 and amplitudes in diagrams (iii) and (iv) are based on the minimum, A ,  and 
maximum, B, values a t  given heights. Units are emz for d, cm sec-1 for velocities, 
sec-1 for w:. 

(b )  (i) Phases and (ii) amplitudes of an amplifying baroclinic wave on a linear u profile 
as given by Eady (1949). Compare with figure 9 (a). Labels such as ‘high’, ‘warm’ etc. 
describe regions to the right of the adjacent curve. 

The quasi-phase, amplitude distributions are obtained by doing a Fourier 
analysis in the q5‘ direction. On retaining the coefficients of the f i s t  (and 
dominant) mode, the phase-amplitude diagrams can be constructed. Each phase 
is plotted relative to a reference value which is taken to be the maximum value 
in the interior at  the top surface. The absolute phase values in reference to the 
pressure wave may be obtained by adding the phase shift constants. 

Although the above procedure introduces an element of approximation 
into the analysis, the method is worthwhile because of the conciseness and 
insight achieved. The non-approximated three-dimensional wave features are 
given in Williams (1971). An examination of those figures indicates the validity 
of this approach and a comparison would perhaps help t;he reader visualize 
the actual distributions given by the somewhat abstract figures 11 and 12. The 
distributions at  r f  = Q in these figures contain much of the information given in 
the earlier diagrams of figures 8 and 9. 

Overall, the quasi-amplitude patterns are smooth and well behaved, indicating 
the validity of this type of analysis. All the quasi-amplitudes, except u’, have 
maxima near r f  = 9 and fall off toward the side boundaries. Again, all amplitudes 
except u‘ have all positive values. The n-’ quasi-amplitude resembles that given 
by Stone (1969), Eady (see Green 1970) and McIntyre (1970) for related 
problems. The v f  quasi-amplitude pattern is very similar to that for n-‘ (except in 
the Ekman layer) as are their respective quasi-phase distributions. This and 

28-2 
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FIGURE 10. Deviatoric wave fields at r' = 6 shown in amplitude verses azimuth form at 
different heights. The variables are ( P )  d om2 set+, ( T )  TIAT, ( W )  w' cm sec-l, (77) u' cin 
sec-1 and ( V )  w' cm see-'. The heights are z' = : (a) &-, ( b )  ++, (c) s, (d) B, (e) (i.e. 
approximately & intervals). Co-ordinates aLl as in ( e ) .  
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the wavelength phase shift indicates a geostrophic relation between the two 
variables. Similarly the distribution of the quasi-phase and amplitude of u’ are 
consistent with a partial geostrophic relation to m‘, except in boundary layers. 

1 

2’ 

0 

0 1 
r’ 

FIGURE 11. Quasi-amplitudes for the deviation fields of the wave solution. (a) (n‘x lo2) 
cm2 sec-2, ( b )  (w‘ x loa) cm2 sec-l, (c) (T‘/AT x lo2), (d) (0’ x lo2) om sec-I, ( e )  (u’ x lo2) cm 
see-1. Co-ordinates all as in (e). 
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FIGURE 12. Quasi-negative relative phases for the deviation fields of the wave solution, 
for (a) n’, ( b )  w‘, (c )  T’, (d) v’, ( e )  u’. Negative phases are in units of 7r radians. Each diagram 
has phase drawn relative to maximum free surface value in the interior region, indicated 
by dot. To obtain absolute phase measured from n‘ field add the following constant phase 
shifts c(T’) = 0-00, c(w’) = -0.35, c(v’) = +0*51, c(u’) = + 0-02. Go-ordinate all as in (e) .  
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The quasi-amplitudes of w' and T' are similar in shape and the variables are 
closely in-phase, reflecting an efficient potential energy release. Some secondary 
side boundary-layer influences enter the w', T' amplitudes. The T' amplitude has 
a diagonally orientated axis, this being consistent with the baroclinicity field of 
figure 7. 

In the negative phase diagrams, the notation is such that positive contour 
values indicate that the wave on that surface is ahead of the reference value. The 
negative phase lines of pressure, figure 12 (a),  would be horizontal straight lines 
if t he  wave was a pure Eady wave. Clearly then variations in shear and baro- 
clinicity affect the wave structure in the interior. The radial sloping of quasi- 
phase lines of IT' indicates a transfer of angular momentum into the middle zone 
(except in the Ekman layer), see also 5 10. In  the boundary-layer regions on the 
sidewalls large variations in the T' phase occur. It has not been established that 
these va,riations are of physical significance, for in these regions the wave ampli- 
tude is weak and this type of analysis may not be valid. However, these diagrams 
may give some indication of what happens to the wave phase in boundary regions. 

The quasi-negative phase of v' does not remain so closely geostrophically 
related to n-' in the boundary-layer regions. The Ekman layer causes aretardation 
of the outer part of the v' wave but an advancement of the inner part in the base 
region. The Ekman layer has the same effect on the phase of the u' wave. The 
quasi-phase of uf is difficult to define near the centre of the base where the 
amplitude vanishes in a transition from positive to negative values. 

The boundary and boundary-layer regions have a significant effect on the 
phase patterns of w' and T' in those regions. For the w' phase the strongest 
effects occur in the bottom corners and are associated with weak amplitudes. 
This effect may be seen in the basic w' field, Williams (1971), where at a given 
azimuth wf effectively changes sign at  these corners from interior values. This 
may reflect a continuity requirement for the vertical flow of the central Ekman 
layer. In  the 27' phase pattern the concentrations are associated with weak 
amplitudes in the upper, outer region and with the thermal boundary layers on 
the sidewalls. All concentrations indicate a retardation of the T wave. 

The main conclusion that we can draw from figures 11 and 12 is that although 
a pure Eady wave is not present something closely related to it dominates the 
interior of the flow. Basically the wave is a baroclinic wave whose precise nature 
can only be defined by figures 11 and 12. 

9. Energetic balance and transfer 
The component terms of the prediction equations (1) to (4) show that the flow 

is essentially hydrostatic and geostrophic in the interior of the fluid (Williams 
1971). In  the vertical vorticity equation all terms, i.e. stretching, viscous 
diffusion, non-linear and time change appear to be significant. The presence of 
viscous diffusion in the vorticity equation might be expected as the balance is 
related to that of the axisymmetric u which has a known viscous term pre- 
dominance (Williams 1967). 

Figure 13 indicates schematically how the balance of the global energy 



440 G. P .  Williams 

transfers defined by equations (1 1 )  to (13) is achieved. Both kinetic energy forms 
are maintained by conversion from potential energy, there being only a weak 
conversion from the deviatoric to mean kinetic energy. Thus the deviatoric wave 
gets its energy in the same way as the wave of inviscid, linearized theory and is 
essentially baroclinic. The magnitude of the deviatoric kinetic energy is about 

FIGURE 13. Schematic flow of energy from input a t  heat source to dissipation of kinetic 
energy. Integrals are over the wavelength volume and in units of em5 secc2 for the 
quantity terms and 10-3 cmb s e c 3  for the conversions. Tria.ds indicate contributions in the 
(u, w, w) components. Figure shows wave is baroclinic. Based on equations (11) to (15). 

half that of the mean energy. The 8, W and w' components of the kinetic energy 
are all small. In the dissipation of mean kinetic energy the W component is large, 
reflecting the importance of vertical boundary layers in the mean flow. On the 
other hand in the deviatoric case the w' dissipation component is small indicating 
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that  only weak vertical side boundary effects occur in the deviatoric flow. The 
opposite occurs in the Ekman layer with the 5, v' dissipation components being 
small and large respectively. 

The role of the different boundary layers becomes more apparent when the 
local distribution of the kinetic energy sources and sinks are displayed (figure 14). 
The side boundary layers predominate in both the source and sink of the mean 
kinetic energy but in the deviatoric flow most of the energy comes from the 
interior region with only a minor contribution from the inner boundary layer. 
For the deviatoric flow the kinetic energy is dissipated in the Ekman layer and jet. 

r' 
~ 

FIGURE 14. Local variation of energy sources and sinks (a) &ZF in cm2 sec-3, (a) Pqw'T' 
in cm2 s e r a ,  (c) E2 in cm2 s e r a ,  (d) in em2 SBC-' from equations (22) and 
(23). The co-ordinates cover interior ranges r;, zi = -& and r i ,  z; = g .  

Kinetic energy is created and destroyed in different regions of the fluid while 
the largest kinetic energy values occur at the free surface and to  some exten6 in 
the Ekman layer (figure 15). Energy in the lowest quarter of the fluid is mostly 
deviatoric energy. The terms of equations (16) to  (19), illustrated in figure 16, 
show how this energy system maintains itself. I n  both kinetic energy forms the 
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energy supply is transferred vertically from mid levels to upper and lower levels 
by the pressure interaction terms (WF), and ( ~ ‘ r ‘ ) ~  to balance the dissipation. An 
outstanding feature of t,he deviatoric energy balance of figure 16 (b )  is the strong 
Ekman layer interaction in the wave through the deviatoric pressure field. 

The pressure interaction term also dominates in the radial transfer of the mean 
kinetic energy and strong side-layer transfers are present. The slight imbalance 
between the terms shown in diagram (c) is made up by the transfers of the tripIe 
cell circulation. 

I n  the radial transfer of the deviatoric kinetic energy, figure 16 (d ) ,  the side 
regions do not interact strongly with the interior. The small conversion from 
deviatoric to mean kinetic energy occurs a t  all radii. The net transfer due to the 
non-linear terms is small and the pressure interaction term seems to be the most 
effective transfer mechanism. 

- 

3 

0 1 

1 

2’ 

0 
0 1 2 3 4 

r’ Kinetic energy 

FIGURE 15. ( a )  Radial distribution of vertically averaged kinetic energies and ( b )  vertical 
distribution of radially averaged kinetic energies. ( A )  total, (23) mean, (C) deviatoric. 
Units cm2 S ~ C - ~ .  

10. Angular momentum and heat balances 
The maintenance of the mean temperature and zonal velocity fields and the 

associated role of the mean meridional circulation are most clearly demonstrated 
by the heat and angular momentum balances (figures 17 to  20). Each balance 
will be discussed separately and then the over-all functioning of the system 
will become apparent. 

The boundary regions adjacent to the negative zonal flow form the source 
regions of angular momentum, the base being the major contributor. The 
remaining upper sections of the sidewalls form the main sinks of angular 
momentum, figure 17 (a).  The momentum sink due to positive zonal flow in the 
mid-base region is smaller than the sidewall sinks but nonetheless is important 
to the dynamics of the interior region. 

Both the mean circulation and deviatoric flow are active in the maintenance 
and transfer of the momentum source, sink system (figure 17). Cause and effect 
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being inseparable here we can only describe bhe consistency of the flow with the 
source, sink system it generates. 

In  discussing the angular momentum transfer it is convenient to consider the 
flow as being made up of 3 different regions, each one associated with a cell of the 
mean circulation. The mean meridional circulation at  the sidewalls is responsible 
for transferring the angular momentum supplied by the base corner regions to 

16 

a 

0 

-8 

- 16 

-4 -2 0 2 4  -4 -2 0 2  4 

r' 

FIUURE 16. Top: vertical distribution of vertical kinetic energy balance for (a) mean 
energy and (b)  deviatoric energy from equations (16) and (17). Below: radial distribution of 
radial kinetic energy transfer balance for (c) mean energy and (d) deviatoric energy from 
equations (18)-(19), multiplied by r for global comparison. Terms are ( A )  flux by total 
circulation, (B)  conversion between deviatoric to mean energy, (C) interaction of deviatorie 
and mean energies, ( D )  viscous dissipation, (E)  pressure interaction and (3') conversion 
from potential energy. Terms are negligible if not drawn. Units are 10-2 for (c), for 
others, in em2 

higher levels where much of it is lost t o  the upper sidewalls, thereby maintaining 
the zonal flow against sidewall dissipation. Despite this dissipation the side 
regions produce a net supply of angular momentum. The deviatoric flux then 
acts t o  transport this supply into the axis of the angular momentum jet (figure 
4 (c)) at r' = Q from both sides. Accumulation of angular momentum supply in 
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bhe jet is prevented by the central mean meriodional cell which acts in compensa- 
tion to transfer momentum radially out of the jet and then to transport i t  
downward to the central Ekman layer where it balances dissipation and maintains 
the positive zonal flow near mid-base. 

The deviatoric transfer of angular momentum occurs largely in the upper levels 
and is generally against the gradient of the mean angular momentum field 
(although we note that the maximum angular momentum occurs slightly inward 
of the deviatoric flux maximum). Significant outward deviatoric transport occurs 
in the Ekman layer and figure 19 provides a closer look at the deviatoric angular 
momentum terms r a  and ru'w'. The Ekman layer contribution to  ru- can be 
reconstructed by superimposing the usual frictional cross-flow in and out of 
pressure centres methodically onto a simple geostrophic wave flow. The resulting 
flow forms the familiar sawtooth pattern characteristic of momentum transfer. 

.~ 

0-2 

- 0.2 

0 1 0 

r' 

1 

FIGURE 17. Radial distributions of radial angular momentum transfers (a) transport and 
maintenance of an inner ring: ( A )  eddy transport, (B) mean circulation transport, (C) torque 
at base, ( D )  torque at inner r = a cylinder, ( E )  torque at  cylinder surface at  r.  Based on 
equation (26). (6) Transport and maintenance of mean angular momentum: ( A )  deviatoric 
flux, (B) mean circulation flux, ( C )  torque a t  base, (D) horizontal diffusion. Based on 
equation ( 2 5 ) ,  the terms have been multiplied by r to allow for volume variation. Units are 
om6 set+ for (a) and cm3 sec-2 for (6). 

The above deviatoric momentum transfer is consistent with that obtained in 
the baroclinic instability theory of Pedlosky (1964), Stone (1969) and McIntyre 
(1970). These studies showed that baroclinic waves can produce deviatoric 
momentum transfers that tend t o  concentrate the jet and provide barotropic 
energy transfer toward the mean kinetic energy. For this to  occur it is necessary 
to  have lateral shear and that the wave be allowed to  develop lateral phase 
variations, a feature nob included in earlier instability studies. The lateral phase 
variations of the annulus wave (figure 12) are of course consistent with such 
deviatoric angular momentum transfers. 

The main purpose of the annulus wave is of course to transfer heat and the 
terms of the mean temperature equation (27) show that this is accomplished in 
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r' 

FIGURE 18. Components of the mean angular momentum equation (24). (a)  - -asr ,  
(b)  -G%iiz, (c)  - l / r ( r v q ) , ,  (d) -(a),, ( e )  vr(Z,./r)r, ( f )  mZz. The co-ordinates cover the 
interior grid points of u, i.e. r;, z; = &; ri, 24 = E. Units cma sec-2. A reduced 
contouring interval is used for interior regions. 
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a relatively straightforward manner, figure 20. The mean meridional motion 
transports heat out of the outer side boundary layer into the adjacent region 
whence the deviatoric flow transports it across the fluid to the region adjacent to 
the inner boundary layer. There the mean circulation transfers it into the inner 
side boundary layer to be conducted into the inner cold wall. 

The above angular momentum and heat balances demonstrate the consistency 
of the mean meridional circulation with the other mean fields in their mutual 
maintenance and co-existence. The two boundary-layer cells are needed to 
provide (a) the heat transfer to and from the side boundaries and ( b )  the momen- 
tum transfer from the base to the upper side boundaries for the maintenance of 
the zonal flow. The central cell is required for the momentum balance of the 
interior region and transfers momentum from the jet to the central Ekman layer. 
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2’ 

0 
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r‘ 

FIGURE 19. Deviatoric fluxes of angular momentum (a )  ru7 and ( b )  PUT. 
Units are 10-3 em8 sec-2. 

11. Concluding summary 
Detailed characteristics of the fluid mechanics of an annulus wave and of the 

axisymmetric flow at; the same point in parameter space have been presented. 
The differences between these two solutions are fundamenta1.t 

That the deviatoric wave motion is due to the baroclinic instability mechanism 
in the sense of Charney (1947) and Eady (1949) may be concluded from the 
kinematics and energetics, figures 8 to 13. The deviatoric wave resembles Eady’s 
theoretical wave closely in the centre of the fluid and the complete wave can be 
defined in terms of two-dimensional quasi-phase, amplitude distributions 
(figures 11 and 12, 5 8). Those diagrams also provide an indication of the form 
of baroclinic waves under the influence of lateral shear and baroclinicity varia- 
tions and give an idea of the nature of certain solutions to the non-separable 
baroclinic instability problem. 

t Lorenz (1970, $ 5 )  gives a related discussion for the atmospheric system. 
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The separation of the wave solution into mean and deviatoric components 
revealed certain simple features, provided insight into the system and in so doing 
justified this method of analysis. A major characteristic of the deviatoric fields is 
the smallness of side boundary-layer features (figure 11). This is significant for 
it means that the complex features of the mean fields are nob reproduced in the 
deviatoric fields. It also suggests that the wave primarily is a product of ijhe 
interior region that is only slightly modified by the sidelayer regions. However, 

r: T l  4 
(4 

FIGURE 20. Componenta of the mean temperature equation (27). (a) Mean circulation 
flux - [@?+ d'J, ( b )  deviatoricflux - [( l/r) (mT),+ (-)J, ( G )  KVP.  Units are 10-asec-l. 

sbrong Ekman layer features are present and both the mean and deviatoric flows 
form strong Ekman layers. The importance of the Ekman layers in the deviatoric 
characteristics indicates why allowing for such layers in the analytical theory of 
annulus instabilities, Barcilon (1964), produces significant improvements in 
predicting the transition curve. 

The large difference between the zonal mean state and the axisymmehic state 
points to a fundamental difficulty in our understanding of the wave and in 
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reconstructing it analytically. The disparity between the two states means that 
a linear baroclinic instability analysis of the axisymmetric state cannot explain 
the wave state, Only a non-linear analysis of a finite amplitude instability could 
provide this and that remains a difficult problem. The regularity of the deviatoric 
flow and its resemblance to waves produced by linear theory is deceptive for it 
may lead one to  the conclusion that the zonal mean state is the proper meanstate 
or the initial state of the stability analysis. This cannot be so for the basic 
mathematical requirements of stability theory demand that the initial state be a 
solution t o  the Navier-Stokes equations in the absence of the wave. It is possible 
that in finite amplitude the mean environment with which the wave interacts 
is the wave-present zonal mean state (and the character of the deviatoric fields 
suggest this). However i t  is not correct to regard the instabiliby process as 
being the linear instability of the zonal mean state. 

Turning to  the geophysical implications of the solutions, a detailed comparison 
in every respect of the annulus dynamics with that of the atmosphere would not 
be relevant and would be extending the analogy beyond its intended limit. It is 
of interest however to  draw attention to  certain common characteristics of 
the two systems and this can be done most conveniently by comparing our 
figures with those of Smagorinsky et al. (1965). Such a comparison shows that 
although the mean fields are maintained by different mechanisms and although 
the atmospheric disturbances are not steady, there is a good similarity in the 
deviatoric (eddy) fields and transports. This could be taken as evidence in 
support of the view that many of the characteristic features of the atmosphere’s 
dynamics and energetics simply reflect the finite amplitude consequences of 
baroclinic instability. 

Comparison of the mean fields of the two systems however is another matter. 
Although there may be superficial resemblances the sources of potential energy 
in particular are different. I n  the atmosphere, radiative balance and latent heat 
of condensation are crucial. But the mean fields of the annulus are almost cer- 
tainly influenced by the side boundary layers. This is true a t  least for the rigidly 
bounded axisymmetric case studied by McIntyre (1968) in which aftier accom- 
modating a given Ekman transport, the thermal boundary layers approximately 
determine the average gradients of the interior temperature field. The balance 
of terms for our solution shows that the side boundary layers are sufficiently 
similar in nature for i t  to  be reasonable to  expect them still to  be of considerable 
importance in maintaining the mean temperature. 

How such a boundary layer influenced mean state and the associated deviatoric 
elements behave with variations in AT and i2 is not known and in any case 
cannot be compared with planetary atmospheres for which no AT is externally 
specified. Neither can the correspondence between the effective AT of the two 
systems be determined. Annulus convection has relevance t o  the basic studies of 
the baroclinic instability mechanism but remains a questionable analogue to 
planetary atmospheric motions. 
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comments on this work and for suggestions that greatly helped the writing of 
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